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Theoretical aspects concerning the calculation of the air damping of microbeam

resonators in the framework of continuum fluid mechanics are discussed. A closed

relationship between Knudsen and Stokes numbers is derived, which indicates that the

no-slip flow regime is attained in systems that operate at high Stokes numbers only,

while systems that operate at low Stokes numbers invariably enter the slip flow regime.

These observations are relevant to improve the modelling and simulation of microbeam

resonators integrated to micro-electromechanical systems (MEMS). In addition,

analytical expressions of the viscous damping coefficients for different flow regimes

are discussed in relation to experimental data.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of a flexural beam is governed by Bernoulli–Euler equation [1]. For a beam placed in the x1-direction of
the coordinate system (Fig. 1), the deflection function f obeys to

EI
q4f
qx4

1

þm
q2f
qt2
þ CS

qf
qt
¼ f , (1)

where E is Young’s modulus, I is the moment of inertia, m is the mass per unit length, and CS is the structural damping
coefficient of the beam, which accounts for internal energy losses. Also in Eq. (1), the external force may be written as
f ¼ f drive þ f fluid, where each term represents, respectively, the driving force that excites the beam and the viscous force
due to the surrounding fluid [2]. It is known that ffluid has two components: one is in-phase with the velocity, CVqf=qt, thus
denominated viscous damping, and the other is in phase with the acceleration, maq2f=qt2, hence denominated added
mass [2,3]. The viscous coefficient CV directly affects the quality factor Q, while ma produces a shift in the resonance
frequency of the beam. Therefore, a proper evaluation of ffluid is crucial to improve the accuracy of computation of the
quality factor of microbeam resonators integrated to MEMS [4,5], as well as to optimize cantilevers used in atomic force
microscopy [2,3,6], microconverters [7], and biosensors [8].

In the framework of continuum fluid mechanics, viscous forces are determined from the fluid stresses acting on the
body surface [9]. For this purpose, the fluid velocity u(x) and pressure p(x) fields around the vibrating beam are obtained by
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Fig. 1. Schematic representation of a cylindrical beam operating as a cantilever in a large gaseous environment.
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solving Navier–Stokes (NS) equations,

qu

qt
þ ðu � rÞu ¼ �

rp

rf
þ nr2u; r � u ¼ 0, (2)

where rf is the fluid density and n ¼ m/rf is the fluid kinematic viscosity, m being the viscosity coefficient (the body force
due to gravity is normally neglected in MEMS). Under harmonic motion conditions, the gas surrounding a resonating beam
follows the oscillatory motion of the beam with angular frequency o. Hence the scaling parameter for the fluid dynamic
problem is the Stokes number,

St ¼ oD2=4n, (3)

which is defined as the ratio between inertial and viscous forces (D is a characteristic length for the particular flow, the
cross-sectional width of the beam in this case; Fig. 1). This dimensionless number is also referred to as the kinetic Reynolds
number in the literature [2,3,6,7]. In particular, if St51, inertial effects may be neglected in Eq. (2), which leads to the
Stokes model, a formulation normally preferred for the sake of simplicity. Nevertheless, microbeams resonators involve
very high frequencies. For this reason, St numbers are relatively large and the full NS equations are usually needed.

When the fluid is air or another gas, choosing the appropriate velocity values at the beam surface, uwall, is a key step in
modelling. In fact, gas flow presents different regimes due to rarefaction effects, which can be characterized by the
Knudsen number,

Kn ¼ l=D, (4)

where l is the mean free path of molecules (inversely proportional to the gas pressure). There is consensus in the literature
[10–12] that gas microflows can be treated in the classical framework of continuum fluid mechanics if Kno0.001, i.e. by
using NS equations with the no-slip boundary condition,

uwall ¼ U, (5)

where U is the tangential velocity of the beam. In the range 0.001oKno0.1, NS equations are still valid, but slip boundary
conditions must be applied, such as the classical Maxwell slip-velocity equation,

uwall ¼ U þ l
qu

qx

����
wall

, (6)

here written for the case of fully diffuse reflection (a review on the main models of the slip boundary condition is given in
[12]). In Eq. (6), x represents the direction locally normal to the wall. When Kn40.1, the continuum fluid mechanics breaks
down, and there is a transitional flow region towards the free molecule flow, where statistical approaches are required [11].
Let us note here that l ¼ 65 nm for ideal gases at standard conditions of temperature and pressure. This value indicates that
the beam cross-sectional size at which continuum fluid mechanics breaks down is D�1mm at normal pressure. Therefore,
the flow around micro-scale beams at normal pressure can be modelled by using Eq. (2) with either Eq. (5) or (6), but the
flow around nano-scale beams needs a different treatment.

The aim of this work is to discuss the formulation of the fluid dynamics problem for the evaluation of air damping when
Kno0.1. More precisely, we observe that the type of boundary condition to be applied (slip/no-slip) is also linked to the
Stokes number of the system, which defines the (steady/unsteady) character of the flow. In what follows we study the
Stokes numbers inherently associated to microbeam resonators in air. It is worth to mention that we are dealing with
microbeams immersed in a large gaseous environment, and placed far from the walls. Examples of application of
microbeams in these conditions are vibrating beams accelerometers (Fig. 2), whose work principle is based on the
frequency shift of a vibrating quartz microbeam [13,14]. Other specific flow problems appearing in MEMS, like squeeze film
damping [15] are not considered in the present analysis.
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Fig. 2. Vibrating inertial accelerometer transducer [13,14].
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Fig. 3. Stokes number as a function of Kudsen number for cylindrical beam resonators in air. Lines represent the prediction of Eq. (7) with

n ¼ 15�10�6 m2/s, l ¼ 65 nm, E/r ¼ 8290 m/s for silicon, and E/r ¼ 5440 m/s for quartz glass.
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2. Flow regimes for the gas surrounding a vibrating beam

For a transversely vibrating beam of circular cross-section, with diameter D and length LbD (Fig. 1), the resonance
frequency for the i-th mode in vacuum is oi ¼ k2

i ðE=16rÞ1=2D=L2, where r is the density of the beam, and k1 ¼1.875,
k2 ¼ 4.694, y, for a flexural beam operating as a cantilever [1–3]. As a first approximation, we may use oi to scale
the beam resonance frequency in air. Thus the Stokes number (Eq. (3)) can be expressed in terms of the beam
characteristics as follows, St ¼ ðki=4Þ2ðE=rÞ1=2ðD=LÞ2D=n. It is observed that, for a fixed aspect ratio L/D, St varies linearly
with D. Therefore, introducing the Kn number (Eq. (4)) yields the following relationship for the gas flow in the surroundings
of a microbeam resonator:

St Kn ¼
ki

4

� �2 E

r

� �1=2 D

L

� �2 l
n

. (7)

The right hand side of this expression accounts for the beam material (E/r), the beam aspect ratio (L/D), and
gas properties (l/n). It is worth noting here that, for ideal gases in the continuum approximation, the ratio l/n
does not depend on air pressure but on temperature [10–12]. Thus the product St Kn keeps constant when air pressure
changes.

Following Eq. (7), Fig. 3 presents the Stokes numbers for cylindrical beams vibrating in air at room temperature,
as a function of Knudsen numbers, in the region where the continuum approximation is valid (Kno0.1). Different
curves in Fig. 3 are aimed to illustrate the effect of beam material, aspect ratio and resonance mode. In any
case, it is evident that the no-slip flow regime involves St41, while the slip flow regime involves Str1. The analysis carried
out here refers to cylindrical beams; however, the general findings can be extrapolated to cantilevers of rectangular
cross-section [2,6].
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Fig. 4. Viscous coefficient as a function of Stokes number for different flow regimes.
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3. Viscous damping in different flow regimes

Fig. 3 offers relevant information to be taken into account in modelling the air damping of microbeam resonators by
using continuum fluid mechanics (Kno0.1), i.e. to calculate u(x), p(x), and then CV and Q:
(i)
 Systems that operate at high Stokes numbers involve the no-slip flow regime. Consequently, analytical/numerical
models should be based on the full NS equations (2) and boundary condition (5). Analytical expressions of the
damping coefficients for cylinders under these conditions are available [16] . In particular, for Stb1, their result
simplifies to,

CV ¼ 4pm St

2

� �1=2

. (8)

The analysis has been reworked lately for microbeam resonators [2,3], then confirmed by experiments [17]
and numerical calculations [18]. The modelling of cantilever dynamics in this regime has been systematically
improved [19].
(ii)
 Systems that operate at low Stokes numbers invariably enter the slip flow regime. Consequently, analytical/numerical
formulations should account for the slip velocity at the beam surface. An analytical expression of the damping
coefficient for cylinders at St51 has been reported [20], which is based on Stokes equations and the slip boundary
condition (6); that is,

CV ¼
4pm

logð4=St�Þ � gþ 1=2þ cKn
, (9)

where St*
¼ DU/2n, g ¼ 0.5572 is Euler’s constant and cE 1.8 is a coefficient. It is appropriate to mention that beam

resonators in the slip regime are usually modelled as a string of oscillating spheres (for instance, [8]). For the purposes
of illustration, Fig. 4 compares the prediction of Eq. (9) with experimental data reported in the literature [6],
corresponding to four nanobeam resonators in air, for which Kn is on the order of 0.1.
(iii)
 In the intermediate region, say Stokes numbers between 0.1 and 10, the full problem must be formulated, which
necessarily require numerical calculations. Abundant experimental data found in the literature fall in this region. As an
example, the full line in Fig. 4 condenses results obtained from silicon microbeams in air [5], for which Kn is on the
order of 0.001.
4. Concluding remarks

Eq. (7) reveals that the scaling parameters St and Kn that characterize the gas flow in the surroundings of microbeam
resonators are closely related. Accordingly, Fig. 3 shows the flow regimes that can be reached by microbeams in air. It is
relevant to note that attaining a regime with Sto1 and Kno0.001 is virtually impossible in practice. Therefore, analytical/
numerical models of fluid damping that include the no-slip boundary condition should not be extrapolated
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straightforwardly to the case of gaseous environment at low St. This aspect is important to note because it is frequently
misunderstood in the literature (see, for example, [4–6]). In the slip regime, the viscous damping appears to depend on Kn
as well, as indicated by Eq. (9). Finally one may conclude that recognizing the gas flow regimes associated to microbeam
resonators is relevant to properly model, and hence compute, air damping effects.
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